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UNITARY REPRESENTATIONS OF U( 2 , 2 )  

AND MASSLESS FIELDS" 

Behram Kurgunoglu 

Center f o r  Theoretical  Studies  

University of M i a m i  

Coral Gables, Flor ida 

This Daper contains  a discussion of u n i t a r y  i r r e d u c i b l e  

- ~ e r L L u L A A u ~ v ~ ~ l l l u  nvncnn+ +-innc of t h e  g r ~ ~ p  U(2,2) in  term^ of the R G R - C C X I ~ Z C ~  , 

algebra of c r ea t ion  and annih i la t ion  operators  and some a p p l i -  

ca t ions  t o  massless f i e l d s .  I n  p a r t i c u l a r ,  the  U(2,2) algebra 

y i e l d s  d i s c r e t e  values f o r  p4 (energy), one of i t s  generators .  

The l i t t l e  group and wave equations of massless f i e l d s  a r e  a l s o  

derived from t h e  L i e  a lgebra of U(2,2). 

* 
This research i s  supported by U.S.  A i r  Force Office of 

S c i e n t i f i c  Research, Washington D.C., U.S. A i r  Force Contract 

No. 49 (638)-1260 and NASA Contract No. NASA NGR 10-007-010. 
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I. INTRODUCTION 

This paper i s  a contr ibut ion t o  t h e  explosion of group theo- 

r e t i c a l  publ icat ions per ta ining t o  elementary p a r t i c l e  concepts. 

The present  s t a t e  of t heo re t i ca l  research on elementary p a r t i c l e s  

seems t o  ind ica te  tha t  t he re  e x i s t  ever increasing p o s s i b i l i t i e s  

f o r  the  so-cal led 

f o r  the  un i f i ca t ion  of i n t e r n a l  and space-time 

"c l a s s i f i ca t ion"  of  p a r t i c l e s .  Recent attempts (1) 

Proceedings of t he  F i r s t  C o r a l  Gables Conference on SYMMETRY 

PRINCIPLES AT HIGH ENERGY, January 1964, Flor ida (W.H. Freeman 

and Company, San Francisco, 1964). See a l s o  Phys. Rev. 135, 

761 (1964). 
~ 

symmetries i n t o  a s ing le  group t h e o r e t i c a l  s t r u c t u r e  aiming a t  an 

hypothesis of simultaneous charge, hypercharge, and sp in  indepen- 

dence of strerig in t e rac t ions  (at  high energy) have l ed  to f u r t h e r  

discussions of the subject  by o thers (*) .  

t h a t  t he re  a r e  some bas ic  d i f f i c u l t i e s  i n  the models proposed 

These authors  have shown 

e a r l i e r  (1) 

* W.D. McGlinn, Phys. Rev. Let ters  12, 467 (1964) 

F. Coester, M. Hamermesh and W.D. McGlinn, Phys. Rev. 135B, 

451 (1964) 
H. Bacry and J. Nuyts, Physics Le t t e r s  12, 2, 156 (1964) 

M.E. Mayer, H.S. Schnitzer,  E.C.G. Sudarshan, R. Acharya, M.Y. Han, 

Phys. Rev. 136 B, 888 (1964) 
A. Beskow and U. Ottoson, Nuovo Cimento MMIV. 1, 248 (1964) 
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In particular, if one adheres to the existing interpretations of 

the isotopic spin, then spin and isotopic spin assignments to 

various generators of the group U(3,l) lead to non-commuting 

operators for the respective observables. Therefore what re- 

mains as acceptable is the product of two commuting groups i.e. 

the cover group is just the direct product of the Poincar6group 

with an internal symmetry group. 

In the light of these investigations the fundamental issue 

appears to be the possible existence of a non-compact symmetry 

group containing several commuting "little groups" whose repre- 

sentations can provide enough quantum numbers to fit in all the 

"free" particles. 

One of the subjects which is considered to be closed in 

the theory of representations of Poincare'group refers to mass- 

less states. 

in the problem of masses of strongly interacting particles, it 

may not be a waste of time to further discuss the extreme situa- 

tion: 

It is hoped that a further understanding ofkasslessness" may be 
exploited for the study of a more special case, the particles 

with mass. 

In view of a great interest in the last few years, 

the massless state of matter in general (very high energies). 

We shall, as in the previous paper', use the techniques 

of creation and annihilation operators for the representa- 

tion of the massless conformal group U(2.2). Our discussions 
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will be confined only to unitary, irreducible representations. 

11. REPRESENTATION OF U(2,2) 

In order to establish the method we consider a special set 

of ten Hermitian operators satisfying the commutation relations 

for the inhomogeneous Lorentz group. These are given by p 

(four translation operators), and by the relativistic definition 
c1 

of angular momenta 3 , 

where 

F =  

-1 
0 
0 

0 

0 

-1 
0 
0 

0 

0 
-1 
0 

0 7 1 

Ix> = [5; IP> = 

(11.1) 

(11.2) 

and x~J., pv ( p , v  = 1,2,3,4) are subject to commutation relations 

with g 
c1v 

the condition 

being the elements of F. Every Lorentz matrix L satisfies 

N 

L F L = F ,  

A 
where L is the transposed form of L. 

(11.4) 

’B. Kurgunoglu, MODERN QUANTUM THEORY (W.H. Freeman and Company, 
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t 

San Francisco, 1962). See page 254 eq. (~111.8.3) also page 

50 for the definition of the 4 x 4 matrices %,, which are gen- 

erators of rotations and Lorentz transformations. The matrices 

constitute a non-unitary representation of the homogeneous 
%v 
group. This book, in this paper, will be referred to as MQT. 

The operators x and pw under a Lorentz transformation trans- 
IJ- 

form according to 

In a way similar to (11.1) we introduce complex creation and 

annihilation operators. For example, the Hermitian generators of 

the homogeneous Lorentz group can be represented by 

and the operators aa 

relations 

L A I  

(11.6) 

satisfy the commutation 

(11.8) 
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with 

space. We are using a representation of 7 ’ s  given by 

p being taken as the “metric” of the 4-dimensional complex 

r 1 

Y5 = Y 1  Y2 Y 3  Y4 9 

and 

Q11 = Q22 = g33 = . -  g44 = ’ 9  gj4 = g 4 j  = ‘ 9  gka = 0, k # 8, 

where ( j  = 1,2,3) are hermitian and y4 is anti-hermitian. 
j 

The corresponding commutation and anti-commutation relations 

are 

(11.10) ~ 

(11.11) 

(11.12) 
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From the isomorphism of the two representations (11.1) and 

(11.6) it follows that the transformation operator S, corres- 
ponding to a Lorentz transformation L, satisfies the condition 

s p s = p  t (11.14) 

in complex four dimensional space. 

valid only for proper Lorentz transformations. 

Lorentz transformations the right side of (11.14) should be 

replaced by -B. 

the latter case . Under a-lorentz transformation of the 

The condition (11.14) I s  

For improper 

In this paper we shall not be concerned with 
4 

4 See eq. (vII1.5.55)Cl.n page 240, and eqs. (~111.8.21)’ (v111.8.22) 

on page 257 of MQT. 

241 of MQT are examples of S-transformations. 

Y5’ i YP, Y5Yp 

The eqs. (VI11.5.56) and (VIII.5.57) on page 
The operators 

are also generators of S-transformations. 

generators J the operator column vector la> transforms accord- PV ’ 
ing to 

I.’> = s la> (11.15) 

The commutation relations (11.8) are invariant under S-trans- 

formations satisfying the condition (11.14). 

A special type of S-transformations are gauge transformations 
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of the type exp (i@). 

that the determinant of an S-transformation is defined up to 

a phase factor. Hence the group of S-transformations can be 

decomposed according to U = U1 X S 

dimensional unitary group and So is the group of S-transforma- 

tions with determinant + 1. 
(? i nn), n = 1,2, ..., representing an invariant S-transformation 
subgroup of fourth order whose members consist of + 1 and + i. 
This means that there are four types of vector operators aa 

pertaining to the representations of the group U ( 2 , 2 ) .  

Furthermore, from (11.14) it follows 

X Z,  where U1 is the one- 
0 

The factor 2 is of the form exp 
1 

- - 

In terms of the operators aa and aa t the hermitian generators 
of U(2 ,2 ) ,  for the positive energies, are given by 

(11.16) 

( i . i . i T )  

(11.18) 

(11.19 

r = <alp la> . (11.20) 

The 16 Hermitian operators as defined by (11.16) - (11.20) 
provide an irreducible unitary repre~entation(~) of U( 2,2) 

B. Kurjunozlu, Proceedings of Second Coral Gables Conference 
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on Symmetry Principles at High Energy, Freeman and Co., 

san Francisco, 1965, page 163. 

The commutation rules of U(2,2) are given by 

I- -3 

r 1 

r -I 

I- 1 

(11.22) 

(11.24) 

(11.26) 

(11.28) 

(11.29) 

These are satisfied by (11.16) - (11.20). 
The operator I' commutes with a l l  the  rest of the generators, 

From the above commutation rules it is seen that the group U(2,2) 
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contains the Poincark group as i t s  sub-group. 

sentat ion (11.16) - (11.20) refers  t o  massless case. 

The special  repre- 

An invariant of U ( 2 , 2 )  is given by 

The invariants I1 = pP P IJ. , I2 = $ yv JPv p, p P - JPP JVP P, P CL 

of the sub-group as can eas i ly  be shown (via (11.16) - (11.20)) 

vanish. 

Now, from the def ini t ion (11.16) of J,, we obtain 

and 

where ai (i=1,2,3) are the usual Pauli matrices and 

They s a t i s f y  the commutation ru l e s  f o r  the commuting angular 

momenta 6 
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- -~ 

The commutation rules (11.33) are the same as the commutation 

relations corresponding to the Lie algebra of the &-dimensional 

Euclidean namely the 

Hence we see that the space part of J is decomposable into a 

direct product of two three-dimensional rotation groups. 

resultant angular momentum j is associated with angular momenta 

clv 
The 

I where I j, - j21 (=SI is tne minimum value of j, it is tne spin 
quantum number of the representation assuming the values 0, 5, 1 

1, ... 
From (11.17) and definitions of y ' s  (see page 235 of MQT) 

the translation operators pC1 can be written as 

t 
2 3  p1 = Jlx - J2x + 2 1 t  (ala4 + a t a1 + a3a2 t + a a 

t 
2 3  (11.37) 

- - 1 i (ala& t - a a1 + a3a2 t 

t t t 

- a a p2 = 5 y  - J2y 2 

1 3  
1 t  

p3 = Jlz - JZz + (a 3 1  a + a a - a a2 - a2a4) 



12 

Using these definitions we can construct the helicity 

operator of massless particles in the form 

where 

1 and where 2 <a(Bla> commutes with the ten 

and is therefore a group invariant. We shall consider only posi- 

generators of the group 

tive energy representations where the helicity operator 

gether with p4, $, and J form a complete commuting set. 

set of simultaneous eigenstates of these commuting operators will 

be designated by in,(> . 
j, and j, assures also positive sign for the energy and the former 

is obtained only by defining the vacuum state by the conditions 

c0 to- 
A 3 

The requirement of non-negativity for 

a1 1 O > = O  “3 t ( , > = o  
and 

a 2 1 0 > = 0  a & l o > = o  . 
(11.40) 

In complete analogy with Fock representation of harmonic 

oscillator (see chapter 7 of MQT) we find that occupation number 

operators are given by 



t t t + 
" 4 4  N1 = alal, I N2 = aha2, N3 = a3a3, I N4 = 

which s a t i s f y  the eigen-value equations 

where 

na = 0,1,2,3 ,... . 

The normalized eigenstates are defined by 

In1> = 

In3> = 

1 

1 

%f 

1 

1 

(11.41) 

(11.42) 

(11.43) 

so t h a t  the simultaneous eigen-states ln,e> of the complete 

commuting s e t  p4,C0, 9, and J are products of these eigen- 3 
s t a t e s .  

From (11.38) it follows t ha t  the h e l i c i t y  operator can be 

expressed i n  the  form 

J-3 = 1 (N1 + N2 - N3 - N 4 )  = $ N  

and it ac t s  on the state In,g> according t o  

(11.44) 



assumes both positive and negative half odd-integral and integral 

values including zero. Hence we can write 

The eigen-value equation can further be simplified by noting 

that it is equivalent to 

s p4I (11.46) J.P InT, e> = 73 

where 

Hence, the most general state is a superposition of two ortho- 

gonal states 



referring either to two different states of polarization o r  to 

two different particles. 

of various spin states whether one has just a different state of 

polarization or a different particle. 

whether they refer to identical particles (e.g. zeron s = 0, 

photons s = 1) or two different particle states (e.g. v , ?  with 

s = -) as eigen-states of T 

space. 

It depends on the reflection symmetries 

Two states of polarizations, 

1 span a two-dimensional Hilbert 
2 3’ 

Finally we note from (11.37) and (11.43) that the diagonal 
element of the operator p4 with respect to the state [n,E> is 

given by 

where n = 0,1,2,.. . 
included in the algebra of U(2,2). 

so that zero point oscillations are also 

111. WAVE EQUATIONS 

As is well-known the group of translations, being an Abelian 

sub-group of the Poincarg group, has only one-dimensional irreducible, 

unitary representations. 

vector - b the unitary operator is exp E-i b’p’3 . 
translations contains also the representations exp c-i b”p;L7 

provided pw is obtained from pp by a proper Lorentz transformation 

For a tpanslation of states by a real 

This group of 

1 
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An infinitesimal translation of a function of coordinates 

by an amount c b is represented by 
FL 

exp cicbFLpFLz 7c/ (x) exp E-icb’p,] = (l+icb’p,)+ (x) (1-icbvpv) = 

Hence in the limit of e -+ o we obtain 

or, since this is valid for all bCL, we have 

(111.1) 

Now consider the eigen-states Ir,t> of the complete commuting 

set q 

q Ir,t> = r I r, t> . 

The translation operator will act according to 

exp C-icb’pwllx> = Ix + cb> = (1 - ieb’pF)Ix> . 

Hence, this being valid for every b, we get 

a 
ax’ 

p, I.> = - i - I.> . 

(111.2) 



A way of obtaining a wave equation may proceed by repre- 

senting the s t a t e  Ir,t> i n  a Hilbert space spanned by 

Thus writing 
ln,4> . 

and regarding it as 2s+1 component wave f’unction we can derive 

a wave equation. 

From (11.45) we obtain 

o r  introducing the uni t  operator 

f l&t> d 3 ’  r, 

using (111.3) and performing the obvious steps we get the wave 

equations 

a H l r , t , s >  = 2 i h  dt 1 r,t,s> 

where the Hamiltonian H i s  given by 

(111.4) 

For spin  particle 1 ( s y )  1 we have J = 5 1 ha. The corres- 

ponding wave equations are 
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v >  H [ v >  = i h  I a 

a 
H I 0  = - i h  [ y > 

(111.6) 

(111.7) 

where 

H = c U * P ,  I v >  = IrytjF 1 > = two component spinor. 

If we c a l l  I v >  the  neutrino s t a t e  then the anti-neutrino s t a t e  

can be defined by 

I C >  = T I v >  (111.8) 

where T = i a2 ?! i s  the t ime  reversal  operator f o r  a two- 

component spinor s t a t e  and : i s  ju s t  complex conjugation 

operation. The operator T acts  on ai according t o  (see page 

221 of MQT) 

Hence the wave equation(lTI.7) c a n  be wri t ten as 

(111.10) a HI;>= i h  I ? >  

which i s  of the same form as (XZX.6) but r e fe r s  t o  anti-neutrino. 

Reflection symmetry here consis ts  of t i m e  reversal  operation 

alone, since space pa r i ty  i s  not valid i n  t h i s  case. 

As a second example we take s=l with J being represented 
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by Ji = h Ki, (i=1,2,3) where Ki 

dimensional rotations. 

are the generators of three- 

Thus (111.4) yields the wave equations 

(111.11) 

(111.12) 

where I?> is a three-component complex vector, and H = cK.p is 

the Hamiltonian of a single photon. 

three-dimensional column vector in terms of pi, (i=1,2,3) and 

operating on H on the left we obtain 

Now defining 1p> as a 

<plH = 0 

which is due to H being a 3 x 3 anti-symmetric matrix operator 

in p ' s .  Hence the equation (IIT,11) yields 

V.7-J = 0 (111.13) 

which is the transversality condition of the photon wave (see 
chapter I1 of MQT). 

The wave equation (111.12) refers to a state of polarization 

opposite to the one described by (111.11). 

performing a parity operation on I T ) >  
This can be seen by 

Thus if we take 

(111.14) 

and noting the transformation 



. 
. 
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E H C = -  H 

the  wave equation (111.12) becomes 

( 111.15) a HI?> = i h  I f >  

which i s  of the same form as (111.11) but re fers  t o  a s t a t e  of 

polar izat ion opposite t o  the one contained i n  (111.11). 

corresponding t ransversal i ty  condition i s  obtained as C7.q = 0. 

We first  

The 

A t h i r d  example i s  the wave equation f o r  zeron. 

observe that 

/I Thus f o r  zero spin we must have S = - + 6. Hence 

2 2 
P 10,4> = P4 10,4> 

which, using the same methods, yields  the scalar  wave equation 

(111.16) 
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IV. THE LITTLE GROUP 

The group of Lorentz transformations which leave a null vector 

invariant is isomorphic to the two-dimensional Euclidean group. 

This is a known result . However, here we shall derive it in 7 

E.P. Wigner, THEORETICAL PHYSICS. International Atomic Energy 

Agency, 1963, pp 59-82, Edited by A. Salam. 

a direct way. 

v Under an S-transformation the requirement of invariance of p 

is contained in the statements 

(IV. 1) 

This must hold for every aa and ai , which is possible only if 
The operator 

I.1. 
the S-transformations in question commute with p 

6 J*p = - N is the only non-trivial invariant of the group and 
2 

therefore a given S-transformation must be a function of $ N and 
also must satisfy (11.14). Such an operator is uniquely defined 

to be: 
1 iN8 2 S = e  (IV. 2 )  

where 6 can be regarded as an angle of rotation in the xy-plane. 

For an electromagnetic wave 

electric vector in the plane perpendicular to its momentum. 

8 is the angle of rotation of the 
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The result (IV.2) proves the required isomorphism between 

group of Lorentz $ransformations which leave a null vector in- 

variant and the two-dimensional Euclidean grow. Thus the 

representation of the little group f o r  massless particles is 

one-dimensional. The representatives of S are of the form 

where 

and the dimension of the representation is 2 s + 1. 


